Part Number Hot Search : 
PS9005VE BLF178P C124E P6SMB22 2128M BCM5703 AM100 7C010
Product Description
Full Text Search
 

To Download AWL6254 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  02/2008 AWL6254 2.4 ghz 802.11b/g/n wlan pa, lna, and rf switch data sheet - rev 2.0 features ? 3.3 % evm @ p out = +16 dbm with ieee 802.11g 64 qam ofdm at 54 mbps ? 75 ma transmit path current consumption at p out = +16 dbm ? sp3t rf switch to enable bluetooth path ? single +3.6 v supply ? transmit path linear power gain of 28 db ? temperature-compensated linear power detector with positive slope ? receive path in-band gain of 13 db ? receive path noise figure of 2.3 db ? 3 mm x 3 mm x 0.55 mm ulpcc package applications ? 802.11b/g wlan in cell phone designs ? 802.11n in wlan mimo systems ? 2.4 ghz cordless phone handsets/basestations figure 1: block diagram and pinout product description the anadigics AWL6254 is a high performance ingap hbt power amplifer, low-noise amplifer, and rf switch integrated on a single ic. it is particularly applicable to cell phone designs that integrate 802.11b/g wlan in the 2.4 - 2.5 ghz band. matched to 50 ? on all rf ports, the part requires no additional rf matching components off-chip. the antenna port is switched between wlan transmit, wlan receive, and bluetooth paths with a low-loss single-pole triple-throw rf switch. the transmit path pa exhibits unparalleled linearity for both ieee 802.11b/g/n wlan systems under the toughest signal confgurations within these standards. the wlan receive path from the antenna port to receiver output port provides a low noise, high-gain path to the system receiver chain. the positive slope power detector is temperature- compensated on the chip, enabling a single-ended output voltage with excellent accuracy over a wide range of operating temperatures. the AWL6254 is biased by a single +3.6 v supply and consumes ultra- low current in the off mode. the AWL6254 is manufactured using advanced ingap hbt technology that offers state-of-the-art reliability, temperature stability and ruggedness. it is provided in a 3 mm x 3 mm x 0.55 mm ulpcc package optimized for a 50 ? system. aw l6254 input match bias network power detector antenna tx rf in det_out gnd wlan rx enable rx rf out bluetooth wlan tx enable control logic v cc bluetooth enable gn d v cc bias network output match output match s35 package 16 pin 3 mm x 3 mm x 0.55 mm surface mount ulpcc
2 data sheet - rev 2.0 02/2008 AWL6254 table 1: pin description pin name description 1 bluetooth bluetooth rf port 2 gnd ground 3 rx_rf receive rf port 4 gnd ground 5 lna_en lna enable. on/off control for the rx path low noise amplifier 6 bt_en bluetooth enable. on/off control for the bluetooth path 7 pa_en power amplifier enable. on/off control for the tx path power amplfier 8 gnd ground 9 pa _in power amplfier input 10 gnd ground 11 nc no connection 12 v cc power supply. bias for the transistors in the part 13 det_out power detector output. dc coupled power detector output. an emitter follower bjt supplies the output for this pin. 14 gnd ground 15 ant antenna port. common connection for the pa, lna, and bluetooth paths 16 gnd ground
data sheet - rev 2.0 02/2008 AWL6254 3 electrical characteristics table 2: absolute minimum and maximum ratings stresses in excess of the absolute ratings may cause permanent damage. functional operation is not implied under these conditions. exposure to absolute ratings for extended periods of time may adversely affect reliability. table 3: operating ranges the device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defned in the electrical specifcations. parameter min typ max unit comments operating frequency (f) 2400 - 2500 mhz dc power supply voltage (v cc ) +3.3 +3.6 +4.2 v control voltage (v pa_en , v lna_en , v bt_en ) +2.0 0 +3.3 - +4.2 +0.4 v pa "on" pa "shutdown" case temperature (t c ) -40 - +85 c control pin impedance (v pa_en , v lna_en , v bt_en ) - 720 - kn parameter min max unit comments dc power supply voltage (v cc ) - +5.0 v no rf signal applied dc power control voltage (v pa_en ) - +5.0 v no rf signal applied dc power control voltage (v lna_en ) - +5.0 v no rf signal applied dc power control voltage (v bt_en ) - +5.0 v no rf signal applied dc current consumption - 300 ma tx rf input level (rf in ) - 0 dbm ant rf input level (rf in ) - -3 dbm bluetooth rf input level (rf in ) - 23 dbm storage case temperature -55 +150 c operating case temperature -40 +85 c esd tolerance 500 - vdc all pins, forward and reverse voltage. human body model (hbm) msl rating - msl-2 reflow temperature - 260 c
4 data sheet - rev 2.0 02/2008 AWL6254 table 4: dc electrical specifcations - tx path continuous wave (t c = +25 c, v cc = +3.6 v, v pa_en = +3.3 v, v lna_en = 0 v , v bt_en = 0 v) parameter min typ max unit comments p1db 20 22 - dbm current at p1db 140 175 210 ma shutdown current - 25 75 b a shutdown mode quiescent current 18 26 34 ma v cc = +3.6 v, v pa_en = +3.3 v, v lna_en = 0 v, v bt_en = 0 v, rf = off harmonics 2fo 3fo - - -48 -68 -40 -60 dbc p out =+18 dbm (1) input return loss, tx rf in - -7 -3 db output return loss, antenna port, switch in transmit mode - -9 -4 db switch in tx position reverse isolation (antenna port to tx input port) 30 40 - db switch in tx position, signal injected into antenna port and measured at tx input port, pa = "on" stability (spurious) - -60 -50 dbc 6:1 vswr, p out = +18 dbm (1) , -40 o c t on settling time - 1.0 2.0 s 10% to 90% of maximum rf power. p out = +16 dbm (1) note: (1) power as measured at antenna port of AWL6254.
data sheet - rev 2.0 02/2008 AWL6254 5 table 6: electrical specifcations - tx path 802.11b (t c = +25 c, v cc = +3.6 v, v pa_en = +3.3 v, v lna_en = 0 v , v bt_en = 0 v, 1 mbps, gaussian filtering, bt=0.50) table 5: electrical specifcations - tx path 802.11g (t c = +25 c, v cc = +3.6 v, v pa_en = +3.3 v, v lna_en = 0 v , v bt_en = 0 v, 64 qam ofdm 54 mbps) note: (1) evm includes system noise foor of 1% (-40 db). (2) power as measured at antenna port of AWL6254 note: (1) power as measured at antenna port of AWL6254 parameter min typ max unit comments operating frequency 2400 - 2500 mhz power gain 25 28 32 db gain ripple - 1.5 2 2.0 db across 100 mhz band error vector magnitude (evm) - - 3.3 -29.6 5.0 -26 % db p out = +16 dbm (1), (2) tx spectrum mask pass - - n/a p out = +16 dbm (2) current consumption 60 75 95 ma p out = +16 dbm (2) power detector voltage 650 780 900 mv p out = +16 dbm (2) power detector sensitivity 50 68 85 mv/db 10 dbm < p out < +17 dbm (2) parameter min typ max unit comments operating frequency 2400 - 2500 mhz power gain 25 28 32 db gain ripple - 1.5 2 2.0 db across 100 mhz band adjacent channel power (acpr) 1st sidelobe (11 - 22 mhz offset) - -33 -30 dbr p out = +18 dbm (1) adjacent channel power (acpr) 2nd sidelobe (>22 mhz offset) - -53 -50 dbr p out = +18 dbm (1) tx spectrum mask pass - - n/a p out = +18 dbm (1) current consumption 75 100 125 ma p out = +18 dbm (1) power detector voltage 810 970 1115 mv p out = +18 dbm (1) power detector sensitivity 60 78 95 mv/db 10 dbm < p out < +20 dbm (1)
6 data sheet - rev 2.0 02/2008 AWL6254 table 7: dc electrical specifcations - rx path continuous wave (t c = +25 c, v cc = +3.6 v, v pa_en = 0 v, v lna_en = +3.3 v , v bt_en = 0 v) parameter min typ max unit comments power gain 10 13 16 db gain ripple - ? 0.5 ? 1.0 db across 100 mhz band p1db 4 6 - dbm current at p1db 9 13 17 ma quiescent current 9 13 17 ma noise figure - 2.3 3.9 db includes rf switch and lna return loss, rx rf port - -12 -8 db switch in rx position, antenna port terminated in 50 ? load return loss, antenna port, switch in receive mode - -7 -3 db switch in rx position, with 50 ? rx port load isolation (antenna port to rx port) 22 29 - db switch in tx position, signal injected into antenna port and measured at rx port, pa = "on" s21 performance (@ 1.9 ghz) - -6 0 db stability - -60 -50 dbc
data sheet - rev 2.0 02/2008 AWL6254 7 table 8: dc electrical specifcations - bluetooth path continuous wave (t c = +25 c, v cc = +3.6 v, v pa_en = 0 v, v lna_en = 0 v , v bt_en = +3.3 v) table 9: control logic truth table table 10: control voltages and timing (t c = +25 c, v cc = +3.6 v, other voltages defned by logic below) note: 1. logic state 0 = 0 - 0.4 v; logic state 1 = 2.0 - 4.2 v note: 1. logic state 0 = 0 - 0.4 v; logic state 1 = 2.0 - 4.2 v feic mode pa enable bluetooth enable lna enable pa status lna status switch status shutdown 0 0 0 off off not connected wlan rx 0 0 1 off on wlan rx bluetooth 0 1 0 off off bluetooth wlan tx 1 0 0 on off wlan tx parameter min typ max unit comments lna enable pin control voltage +2.0 - - - - +0.4 v lna = 1 lna = 0 bluetooth enable pin control voltage +2.0 - - - - +0.4 v switch = 1 switch = 0 pa enable pin control voltage +2.0 - - - - +0.4 v pa = 1 pa = 0 parameter min typ max unit comments insertion loss - 0.8 1.5 db 2.4 ghz to 2.5 ghz quiescent current - 60 125 ? a p1db 20 25 - dbm return loss, bluetooth rf port - -10 -8 db switch in bluetooth position, antenna port terminated in 50 ? load return loss, antenna port, switch in bluetooth mode - -10 -8 db switch in bluetooth position, bluetooth port terminated in 50 ? load isolation (antenna port to rx port) 30 38 - db switch in bluetooth position, signal injected into antenna port and measured at rx port
8 data sheet - rev 2.0 02/2008 AWL6254 figure 2: tx path gain and icc vs. output power across freq (v cc = +3.6 v, t a = +25 o c) 802.11g 54 mbps ofdm figure 5: tx path evm vs. output power across freq (v cc = +3.6 v, t a = +25 o c) 802.11g 54 mbps ofdm figure 3: path gain and i cc vs. output power across temp (freq = 2.45 ghz, v cc = +3.6 v) 802.11g 54 mbps ofdm figure 6: tx path evm vs. output power across temp (freq = 2.45 ghz, v cc = +3.6 v) 802.11g 54 mbps ofdm performance data figure 4: tx path gain and i cc vs. output power across power supply voltage (freq = 2.45 ghz, t a = +25 o c) 802.11g 54 mbps ofdm figure 7: tx path evm vs. output power across power supply voltage (freq = 2.45 ghz, t a = +25 o c) 802.11g 54 mbps ofdm figur e 2: tx path gain an d ic c vs . output po we r ac ross frequenc y vcc = +3.6 v, t = +25 c 802.11g 54 m bps ofd m 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 01 23 4567 89 10 11 12 13 14 15 16 17 18 19 20 output pow er (dbm) gain (db ) 0 20 40 60 80 10 0 12 0 14 0 16 0 18 0 20 0 22 0 24 0 26 0 28 0 30 0 32 0 current (ma) gain 2.40 gh z gain 2.45 gh z gain 2.50 gh z current 2.40 gh z current 2.45 gh z current 2.50 gh z gain current figure 3 : tx path gain and icc vs. output pow er a cross temperatur e frequenc y = 2.45 ghz, voltage = +3.6 v 802.11g 54 mb ps ofd m 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 output pow er (dbm) gain (db ) 0 20 40 60 80 10 0 12 0 14 0 16 0 18 0 20 0 22 0 24 0 26 0 28 0 30 0 32 0 34 0 current (ma) gain -40c gain +25c gain +85 c current -40c current +25 c current +85 c current ga in fi gure 4 : t x p a th g a i n an d i cc vs. o u t pu t p ow er a cross p ow er s up p l y v o lt ag e freq = 2.45 ghz, t = +25 c 802.11g 54 m bps ofdm 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 01 234 56 78 91 01 11 21 31 41 51 61 71 81 92 0 output pow er (dbm) gain (db ) 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 current (ma) gain 3.3v gain 3.6 v gain 4.2 v icc 3.3v icc 3.6v icc 4.2v gain current fi gure 5 : t x p a th evm v s. o u t pu t p ow er a cross f requency vcc = +3.6 v, t = +25 c 802.11g 54 m bps ofd m 0 1 2 3 4 5 6 7 8 9 10 0123456789 10 11 12 13 14 15 16 17 18 19 20 output pow er (dbm) evm (% ) evm 2.40 gh z evm 2.45 gh z evm 2.50 gh z figure 7: tx path evm v s. output po we r ac ross po we r supply voltage freq = 2.45 ghz, t = +25 c 802.11g 54 m bps ofdm 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 output pow er (dbm) evm (%) evm 3.3v evm 3.6v evm 4.2v 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 91 01 11 21 31 41 51 61 71 81 9 output pow er (dbm) evm (%) evm -40c evm +25c evm +85c
data sheet - rev 2.0 02/2008 AWL6254 9 figure 8: tx path detector voltage vs. output power across freq (t a = +25 o c, v cc = +3.6 v) 802.11g 54 mbps ofdm figure 9: tx path detector voltage vs. output power across temp (freq = 2.45 ghz, v cc = +3.6 v) 802.11g 54 mbps ofdm figure 10: tx path detector voltage vs. output power across supply voltage (freq = 2.45 ghz, t a = +25 o c) 802.11g 54 mbps ofdm figure 11: tx path and i cc vs. output power across freq (t a = +25 o c ,v cc = +3.6 v) 802.11b gaussian filtering (bt=0.5), 1 mbps figure 12: tx path gain and i cc vs. output power across temp (freq = 2.45 ghz, v cc = +3.6 v) 802.11b gaussian filtering (bt=0.5), 1 mbps figure 13: tx path gain and icc vs. output power across supply voltage (freq=2.45 ghz, t a = +25 o c) 802.11b gaussian filtering (bt=0.5), 1 mbps fi gure 8 : t x p a th d e t ec t or v o lt age vs. o u t pu t p ow er a cross f requency vcc = +3.6 v, t = +25 c 802.11g 54 m bps ofdm 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 output pow er (dbm) detector voltage (v) det. volt. 2.40ghz det. volt. 2.45ghz det. volt. 2.50ghz figure 9: tx path detector voltage vs. output po we r ac ross temperature frequenc y = 2.45 ghz, voltage = +3.6 v 802.11g 54 mb ps ofd m 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 output pow er (dbm) detector voltage (v) det. volt. -40c det. volt. +25c det. volt.+85 c voltag e freq = 2.45 ghz, t = +25 c 802.11g 54 m bps ofdm 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 01 23 456 78 91 01 11 21 31 41 51 61 71 81 92 0 output pow er (dbm) detector voltage (v) det. volt. 3.3 v det. volt. 3.6 v det. volt. 4.2 v figure 11: tx path gain and icc vs. output pow er a cross frequenc y vcc = +3.6 v, t = +25 c 802.11b gaussian filtering (bt = 0.5), 1 m bp s 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 01 234 5678 91 01 11 21 31 41 51 61 71 81 92 0 output pow er (dbm) gain (db ) 0 20 40 60 80 10 0 12 0 14 0 16 0 18 0 20 0 22 0 24 0 26 0 28 0 30 0 32 0 current (ma ) gain 2.40 gh z gain 2.45 gh z gain 2.50 gh z current 2.40 gh z current 2.45 gh z current 2.50 gh z gain current figure 12: tx path gain and icc vs. output pow er a cross temperatur e frequency = 2.45 ghz, voltage = +3.6 v 802.11b gaussian filtering (bt = 0.5), 1 m bps 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 output pow er (dbm) gain (db ) 0 20 40 60 80 10 0 12 0 14 0 16 0 18 0 20 0 22 0 24 0 26 0 28 0 30 0 32 0 34 0 current (ma ) gain -40c gain +25c gain +85 c current -40c current +25 c current +85 c gain current figure 13: tx path gain and icc vs. output pow er a cross po we r supply voltage freq = 2.45 ghz, t = +25 c 802.11b gaussian filtering (bt = 0.5), 1 m bps 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 01 23 45 67 89 10 11 12 13 14 15 16 17 18 19 20 output pow er (dbm) gain (db ) 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 gain 3.3v gain 3.6 v gain 4.2 v icc 3.3v icc 3.6v icc 4.2v gain current
10 data sheet - rev 2.0 02/2008 AWL6254 figure 14: tx path acpr sidelobes 1 & 2 vs. output power across freq (vcc = +3.6 v, t a = +25 o c) 802.11b gaussian filtering (bt=0.5), 1 mbps figure 15: tx path acpr sidelobes 1 & 2 vs. output power across temp (freq = 2.45 ghz, v cc = +3.6 v) 802.11b gaussian filtering (bt=0.5), 1 mbps figure 16: tx path acpr sidelobes 1 & 2 vs. output power across supply voltage (freq = 2.45 ghz, t a = +25 o c) 802.11b gaussian filtering (bt=0.5), 1 mbps figure 17: tx path detector voltage vs. output across freq (v cc = +3.6 v, t a = +25 o c) 802.11b gaussian filtering (bt=0.5), 1 mbps figure 18: tx path detector voltage vs. output across temp (freq = 2.45 ghz, v cc = +3.6 v) 802.11b gaussian filtering (bt=0.5), 1 mbps figur e 14 : tx path ac pr 1st & 2n d sidelobe s vs . output po we r ac ross frequenc y vcc = +3.6 v, t = +25 c 802.11b gaussian filtering (bt = 0.5), 1 mb p s -6 6 -6 2 -5 8 -5 4 -5 0 -4 6 -4 2 -3 8 -3 4 -3 0 -2 6 -2 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 output pow er (dbm) acpr sidelobe (dbr) 1st sidelobe 2.40ghz 1st sidelobe 2.45ghz 1st sidelobe 2.50ghz 2nd sidelobe 2.40ghz 2nd sidelobe 2.45ghz 2nd sidelobe 2.50ghz t emper a t ur e frequenc y = 2.45 ghz, voltage = +3.6 v 802.11b gaussian filtering (bt = 0.5), 1 mb p s -6 6 -6 2 -5 8 -5 4 -5 0 -4 6 -4 2 -3 8 -3 4 -3 0 -2 6 -2 2 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 output pow er (dbm) acpr sidelobe (dbr) 1st sidelobe -40 c 1st sidelobe +25 c 1st sidelobe +85 c 2nd sidelobe -40c 2nd sidelobe +25c 2nd sidelobe +85c voltag e freq = 2.45 ghz, t = +25 c 802.11b gaussian filtering (bt = 0.5), 1 mb ps -6 6 -6 2 -5 8 -5 4 -5 0 -4 6 -4 2 -3 8 -3 4 -3 0 -2 6 -2 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 output pow er (dbm) acpr sidelobe (dbr) 1st sidelobe 3.30v 1st sidelobe 3.60v 1st sidelobe 4.20v 2nd sidelobe 3.30 v 2nd sidelobe 3.60 v 2nd sidelobe 4.20 v figure 17: tx path detector voltage vs. output pow er a cross frequenc y vcc = +3.6 v, t = +25 c 802.11b gaussian filtering (bt = 0.5), 1 m bps 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 output pow er (dbm) detector voltage (v) det. volt. 2.40gh z det. volt. 2.45ghz det. volt. 2.50ghz figure 18: tx path detector voltage vs. output po we r ac ross temperature frequency = 2.45 ghz, voltage = +3.6 v 802.11b gaussian filtering (bt = 0.5), 1 m bps 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 0 1 2 3 4 5 6 7 8 91 01 11 21 31 41 51 61 71 81 9 output pow er (dbm) detector voltage (v) det. volt. -40c det. volt. +25c det. volt.+85c voltag e freq = 2.45 ghz, t = +25 c 802.11b gaussian filtering (bt = 0.5), 1 m bps 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0 1. 1 1. 2 01 23 45 67 89 10 11 12 13 14 15 16 17 18 19 20 output pow er (dbm) detector voltage (v) det. volt. 3.3 v det. volt. 3.6 v det. volt. 4.2 v figure 19: tx path detector voltage vs. output across supply voltage (freq = 2.45 ghz, t a = +25 o c) 802.11b gaussian filtering (bt=0.5), 1 mbps
data sheet - rev 2.0 02/2008 AWL6254 11 figure 20: tx path s-parameters s21 response (v cc = +3.6 v, t a = +25 o c) figure 21: tx path s-parameters s11 & s22 response (v cc = +3.6 v, t a = +25 o c) figure 22: receive path noise figure across supply voltage (v lna _ en =+3.3 v, t a = +25 o c) figure 23: receive path output p1db across freq (v cc = +3.6 v, v lna _ en =+3.3 v, t a = +25 o c) figure 24: receive path output p1db across supply voltage (freq =2.45 ghz, v lna _ en =+3.3 v, t a = +25 o c) figure 20: tx path s-parameters s21 respons e vcc = +3.6 v, t = +25 c -6 0 -5 5 -5 0 -4 5 -4 0 -3 5 -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 10 15 20 25 30 35 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 frequenc y (ghz ) s21 (db) s21 mag (db) figure 21: tx path s-parameters s11 & s22 respons e vcc = +3.6 v, t = +25 c -3 4 -3 2 -3 0 -2 8 -2 6 -2 4 -2 2 -2 0 -1 8 -1 6 -1 4 -1 2 -1 0 -8 -6 -4 -2 0 0. 0 0 .5 1. 0 1 .5 2. 0 2 .5 3. 0 3 .5 4. 0 4 .5 5. 0 frequenc y (ghz ) s11/s22 (db) s11 mag (db) s22 mag (db) figure 25: rx path s-parameters s21 respons e vcc = +3.6 v, t = +25 c -6 0 -5 5 -5 0 -4 5 -4 0 -3 5 -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 10 15 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 frequenc y (ghz ) s21 (db) s21 mag (db) figure 25: rx path s-parameters s21 response (v cc = +3.6 v, t a = +25 o c) figure 22: receive path noise figur e v ln a_ en =+3.3 v, t=+25 c 2. 1 2.15 2. 2 2.25 2. 3 2.35 2. 4 2.45 2. 5 2. 4 2 .4 1 2 .4 2 2 .4 3 2 .4 4 2 .4 5 2 .4 6 2 .4 7 2 .4 8 2 .4 9 2 .5 frequenc y (ghz ) noise figure (db) +3.3v nois e figur e +3.6v nois e figur e +4.2v nois e figur e figure 23: receive path output p1d b v cc =+3.6 v, v ln a_ en =+3.3 v, t=+25 c 10 11 12 13 14 15 -1 1- 10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 output pow er (dbm) gain (db ) 2.4ghz 2.45gh z 2.50gh z op1db points figure 24: receive path output p1d b frequenc y = 2.45 ghz, v ln a_ en =+3.3 v, t=+25 c 10 11 12 13 14 15 -1 1- 10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 output pow er (dbm) gain (db ) +3.3 v +3.6 v +4.2 v op1db points
12 data sheet - rev 2.0 02/2008 AWL6254 figure 26: rx path s-parameters s21 & s22 response (v cc = +3.6 v, t a = +25 o c) figure 26: rx path s-parameters s11 & s22 respons e vcc = +3.6 v, t = +25 c -3 4 -3 2 -3 0 -2 8 -2 6 -2 4 -2 2 -2 0 -1 8 -1 6 -1 4 -1 2 -1 0 -8 -6 -4 -2 0 2 4 1. 0 1 .5 2. 0 2 .5 3. 0 3 .5 4. 0 4 .5 5. 0 frequenc y (ghz ) s11/s22 (db) s11 mag (db) s22 mag (db) figure 27: bluetooth s-parameters s21 response (v cc = +3.6 v, t a = +25 o c) figure 28:bluetooth s-parameters s11 & s22 response (v cc = +3.6 v, t a = +25 o c) figure 27: bluetooth s-parameters s21 respons e vcc = +3.6 v, t = +25 c -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0. 0 0. 5 1. 0 1. 5 2. 0 2. 5 3. 0 0. 0 0 .5 1. 0 1 .5 2. 0 2 .5 3. 0 3 .5 4. 0 4 .5 5. 0 5 .5 6. 0 frequenc y (ghz ) s21 (db) s21 mag (db) figure 28: bluetooth s-parameters s11 & s22 respons e vcc = +3.6 v, t = +25 c -1 8 -1 7 -1 6 -1 5 -1 4 -1 3 -1 2 -1 1 -1 0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 0. 0 0 .5 1. 0 1 .5 2. 0 2 .5 3. 0 3 .5 4. 0 4 .5 5. 0 frequenc y (ghz ) s11/s22 (db) s11 mag (db) s22 mag (db)
data sheet - rev 2.0 02/2008 AWL6254 13 application information figure 29: application circuit co nne ct to r x 1 2 3 gnd 4 pa_i n 5 gnd 6 v cc 8 det_out 9 nc 7 gnd 10 gnd 12 ant 11 bluetooth 13 gnd 14 rx_rf 15 gnd 16 AWL6254 co nn ec t to an te nn a co nne ct to t x co nne ct t o bl ue t oot h lna_en bt_en pa_en 3- bi t co nt ro l v cc de te ct or ou tp ut c1 0.1 ?f 16 v ?20 % **notes** rf traces should be 18 mils wide with 20 mils of clearance. dc traces should be 8 mils wide with 8 mils of clearance.
14 data sheet - rev 2.0 02/2008 AWL6254 package outline figure 30: s35 package outline - 16 pin 3 mm x 3 mm x 0.55 mm ulpcc figure 31: branding specifcation a b in de x are a c d e f g i h to p vi e w si de vi ew bo tt om vi ew 1 4 16 pi n 1 2 . th e te rmi nal #1 iden ti fi er a nd pad n um ber ing c onv ent io n sh a ll co nf o rm to jesd 9 5- 1 spp-0 12 4 . d im ens ion applie s to m et a liz ed p ad a nd is m ea su r ed be tw ee n 0. 25 a nd 0. 30 mm fr om p ad t ip . 1 . a ll di me ns i ons a re i n mi l lim et e rs , a ngles i n degr ees . . 3 . l ead c oplanar it y : 0 .0 5 ma x. di men si on mi nt yp ma x a2 .9 03 .0 03 .1 0 b2 .9 03 .0 03 .1 0 c0 .5 00 .5 50 .6 0 d0 .0 00 .0 20 .0 5 e1 .5 51 .7 01 .8 5 f 1 .5 0 bsc . g0 .1 80 .2 50 .3 0 h 0 .5 0 bsc . i0 .2 00 .3 00 .4 0 mi lli met er s
data sheet - rev 2.0 02/2008 AWL6254 15 figure 32: recommended pcb layout (all units are in mils)
warning anadigics products are not intended for use in life support appliances, devices or systems. use of an anadigics product in any such application without written consent is prohibited. important notice anadigics, inc. 141 mount bethel road warren, new jersey 07059, u.s.a. tel: +1 (908) 668-5000 fax: +1 (908) 668-5132 url: http://www.anadigics.com e-mail: mktg@anadigics.com anadigics, inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. the product specifcations contained in advanced product information sheets and preliminary data sheets are subject to change prior to a products formal introduction. information in data sheets have been carefully checked and are assumed to be reliable; however, anadigics assumes no responsibilities for inaccuracies. anadigics strongly urges customers to verify that the information they are using is current before placing orders. data sheet - rev 2.0 02/2008 16 AWL6254 ordering information order number temperature range package description component packaging AWL6254rs35p8 -40 c to +85 c rohs-compliant 16 pin 3 mm x 3 mm x 0.55 mm surface mount ic 2,500 piece tape and reel eva6254rs35 -40 c to +85 c rohs-compliant 16 pin 3 mm x 3 mm x 0.55 mm surface mount ic 1 piece evaluation board


▲Up To Search▲   

 
Price & Availability of AWL6254

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X